
ROBOOP

A Robotics Object Oriented Package in C++

version 1.09

Documentation

Richard Gourdeau

D�epartement de math�ematiques et de g�enie industriel
�Ecole Polytechnique de Montr�eal

C.P. 6079, Succ. Centre-Ville,

Montr�eal, Qu�ebec, Canada, H3C 3A7

email: richard.gourdeau@polymtl.ca

September 27, 1998

Contents

1 Introduction 3

1.1 Description . 3
1.2 Requirements . 3
1.3 Copyright . 4
1.4 Version history . 4
1.5 Files in the distribution . 6

2 Reference manual 7
2.1 3D homogeneous transforms 7
2.2 The Robot class . 17

2.2.1 Robot object initialization 18
2.2.2 Kinematics . 22
2.2.3 Dynamics . 27
2.2.4 Linearized dynamics 31

2.3 Graphics . 36
2.4 Miscellaneous . 44
2.5 Summary of functions . 47

3 Reporting bugs, contributions and comments 49
3.1 Reporting bugs . 49
3.2 Making a contribution to the package 50
3.3 Citing the package . 50

4 Credits and acknowledgements 51

5 Future developments 52

A Recursive Newton-Euler algorithms 55
A.1 Recursive Newton-Euler formulation 55
A.2 Recursive linearized Newton-Euler formulation 56

1

B GNU Library General Public License 58

2

Chapter 1

Introduction

1.1 Description

This package (ROBOOP1) is a C++ robotics object oriented programming
toolbox suitable for synthesis, and simulation of robotic manipulator models
in an environment that provides \MATLAB like" features for the treatment
of matrices. Its is a portable tool that does not require the use of com-
mercial software. A class named Robot provides the implementation of the
kinematics, the dynamics and the linearized dynamics of serial robotic ma-
nipulators.

1.2 Requirements

This work uses the matrix library NEWMAT09 2 developed by Robert Davies.
Hence, the requirement for the ROBOOP are the same as for the NEWMAT09.
Although make �les are only provided for the Borland C++ 4.5, Visual C++
6.0, Watcom C++ 10.0 and GNU G++ compilers, the following compilers
could be used:

� AT&T C++ 2.1;3.0.1 on a Sun;

� Borland C++ 3.1, 4.5, 5.0;

� Gnu G++ 2.3.3, 2.5.8, 2.6.0, 2.7.2;

� Microsoft C++ (7.0, 8.0);

1Program source and documentation are available from the URL:

http://www.ind2.polymtl.ca/ROBOOP
2available from the site http://nz.com/webnz/robert/index.html

3

� Microsoft Visual C++ 2.0;

� Sun C++ (version 4.0.1);

� Watcom C++ (version 10.0).

See the �le newmat.txt in the newmat directory for more details.
In order to use the graphic features of this package, the software gnuplot3

(version 3.5 on later) must be installed in the PATH of your computer (the
binary name is wgnupl32.exe under Windows 95/NT and gnuplot under
most of other platforms).

1.3 Copyright

ROBOOP { A robotics object oriented package in C++,
Copyright c
 1996, 1997 Richard Gourdeau

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Library General Public License as published
by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This library is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library (see appendix B); if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

1.4 Version history

version 1.09 (98/09/27) Make�le for MS Visual C++ 6.0. The program
�les in this version are the following revisions:

Id: bench.cpp,v 1.8 1998-05-10 21:08:36-04

Id: comp_dq.cpp,v 1.6 1998-05-10 21:08:37-04

Id: comp_dqp.cpp,v 1.6 1998-05-10 21:08:38-04

Id: delta_t.cpp,v 1.6 1998-05-10 21:08:38-04

Id: demo.cpp,v 1.11 1998/09/20 14:06:05

Id: dynamics.cpp,v 1.7 1998-05-10 21:08:39-04

3gnuplot is freely available from the following location:

http://www.cs.dartmouth.edu/gnuplot info.html

4

Id: gnugraph.cpp,v 1.10 1998/09/20 14:44:54

Id: homogen.cpp,v 1.5 1998-05-31 23:20:55-04

Id: kinemat.cpp,v 1.7 1998-05-10 21:08:41-04

Id: robot.cpp,v 1.7 1998-05-12 22:29:23-04

Id: sensitiv.cpp,v 1.4 1998-05-10 21:08:42-04

Id: utils.cpp,v 1.6 1998-05-10 21:08:43-04

Id: robot.h,v 1.10 1998-05-12 22:29:24-04

version 1.08 (98/06/1) Changes to robot.cpp and robot.h to avoid the
warning messages:

initialization of non-const reference `*' from rvalue `*'

Fixed function ieulzxz in homogen.cpp thanks to Kilian Pohl.

version 1.07 (98/05/12) The bench.cpp program is more portable. Sim-
pler make�le for Borland C++. New targets in make�les (clean and
veryclean). Removed the CVS Log tags from the sources. Compiler
option -O now works under gcc 2.7.2 thanks to the new newmat.h

provided by Robert Davies.

version 1.06 (97/11/21) The function inv kin modi�ed to use the Jaco-
bian by default in the iterative procedure (� 1:8� faster). Updated
documentation.

version 1.05 (97/11/17) Added make �le for GNU G++ under Windows
95/NT using Cygnus GNU-Win32 compiler. Added optimization
ags
under GNU G++. Updated documentation.

version 1.04 (97/11/14) Added make �le for GNU G++ and graphic sup-
port through gnuplot (2d plots). Updated documentation.

version 1.03 (97/11/01) Added adaptive step size integration. Changes to
the documentation.

version 1.02 (97/10/21) Upgraded the matrix library from NEWMAT08A
to NEWMAT09. New directory structure : newmat08 is replaced by
newmat. Conditional compilation of delete [] for pre 2.1 C++ com-
pilers has been removed since NEWMAT09 no longer supports these
compilers. Minor changes to the documentation.

version 1.01 (97/01/17) Conditional compilation of delete [] for pre 2.1
C++ compilers. Changes to the documentation.

version 1.0 (96/12/15) First public release of the package.

5

1.5 Files in the distribution

readme txt readme �le
roboop gnu make �le for GNU G++
roboop gw32 make �le for GNU-Win32 (Windows 95/NT)
roboop mak make �le for Borland C++ 4.5 (Windows 95/NT)
roboop mk make �le for Watcom C++ 10.0 (Windows 95/NT)
bench mk1 used by the make �le roboop.mk
demo mk1 used by the make �le roboop.mk
newmat mk1 used by the make �le roboop.mk
roboop mk1 used by the make �le roboop.mk
roboop nt make �le for Visual C++ 6.0 (Windows 95/NT)
demo txt output of the demo program
rr dat txt example of robot data �le

newmat directory of the matrix library NEWMAT09
see the �le newmat.txt

docs documentation directory
gnulgpl txt GNU Library General Public License
robot ps documentation in postscript format

source the ROBOOP program source directory
robot h header �le
bench cpp benchmark program �le
comp dq cpp simpi�ed version of delta t with no dqp and dqpp

comp dqp cpp simpi�ed version of delta t with no dq and dqpp

delta t cpp compute torque variation w/r to dq, dqp and dqpp

demo cpp demo program �le
dynamics cpp dynamics functions
gnugraph cpp graphics functions
homogen cpp homogeneous transform functions
kinemat cpp kinematics functions
robot cpp constructors and other stu�
sensitiv cpp partial derivatives of robot dynamics
utils cpp miscellaneous

6

Chapter 2

Reference manual

This package uses data types de�ned by the NEWMAT09 matrix library:

� Real : the type for
oating point values. It can be either a float

or a double as de�ned in the header �le include.h in the newmat

directory.

� Matrix : the type for matrices as de�ned in the NEWMAT09 documen-
tation.

� ColumnVector : a type for column vectors derived from Matrix.

� ReturnMatrix : the type used by functions for returning any type of
matrix (Matrix, ColumnVector, RowVector, etc).

The �le demo.cpp presents examples for the use of some functions in the
package. The time required to compute some functions for a 6 dof robot can
be obtained with the �le bench.cpp.

2.1 3D homogeneous transforms

In this section, functions dealing with 4�4 homogeneous transform matrices
are described.

7

eulzxz

Syntax

ReturnMatrix eulzxz(const ColumnVector & a);

Description

Given a column vector a2
64
1

�

2

3
75 (2.1)

this function returns the homogeneous transform matrix given by

Rot(z;
1)Rot(x; �)Rot(z;
2) (2.2)

Note: the column vector a must have a lenght of at least 3. Only the �rst
3 elements are used.

Return Value

Matrix

8

ieulzxz

Syntax

ReturnMatrix ieulzxz(const Matrix & R);

Description

Given a homogeneous transform matrix R, this function returns a column
vector2

64
1
�

2

3
75 (2.3)

such that the 3� 3 rotation bloc of the matrix

Rot(z;
1)Rot(x; �)Rot(z;
2) (2.4)

is equal to the 3� 3 rotation bloc of the matrix R.

Return Value

ColumnVector.

9

irotk

Syntax

ReturnMatrix irotk(const Matrix & R);

Description

Given a homogeneous transform matrix R, this function returns a column
vector"

k

�

#
(2.5)

with k a unit vector such that the 3� 3 rotation bloc of the matrix

Rot(k; �) (2.6)

is equal to the 3� 3 rotation bloc of the matrix R.

Return Value

ColumnVector.

10

irpy

Syntax

ReturnMatrix irpy(const Matrix & R);

Description

Given a homogeneous transform matrix R, this function returns a column
vector2

64 �

�

3
75 (2.7)

such that the 3� 3 rotation bloc of the matrix

Rot(z;
)Rot(y; �)Rot(x; �) (2.8)

is equal to the 3� 3 rotation bloc of the matrix R.

Return Value

ColumnVector.

11

rotd

Syntax

ReturnMatrix rotd(Real theta,

const ColumnVector & k1,

const ColumnVector & k2);

Description

This function returns the matrix of a rotation of an angle theta around the
oriented line segment de�ned by the points k1 and k2.
Note: the column vectors k1 and k2 must have a lenght of at least 3. Only
the �rst 3 elements are used.

Return Value

Matrix

12

rotk

Syntax

ReturnMatrix rotk(Real theta,

const ColumnVector & k);

Description

This function returns the matrix of a rotation of an angle theta around the
vector k.

Rot(k; �) (2.9)

Note: the column vector k must have a lenght of at least 3. Only the �rst
3 elements are used.

Return Value

Matrix

13

rpy

Syntax

ReturnMatrix rpy(const ColumnVector & a);

Description

Given a column vector a2
64 �

�

3
75 (2.10)

this function returns the homogeneous transform matrix given by

Rot(z;
)Rot(y; �)Rot(x; �) (2.11)

Note: the column vector a must have a lenght of at least 3. Only the �rst
3 elements are used.

Return Value

Matrix

14

rotx, roty, rotz

Syntax

ReturnMatrix rotx(Real alpha);

ReturnMatrix roty(Real beta);

ReturnMatrix rotz(Real gamma);

Description

These functions return the elementary rotation matrices:

Rot(x; �) =

2
6664
1 0 0 0
0 cos� � sin� 0
0 sin � cos� 0
0 0 0 1

3
7775 (2.12)

Rot(y; �) =

2
6664

cos� 0 sin � 0
0 1 0 0

� sin � 0 cos� 0
0 0 0 1

3
7775 (2.13)

Rot(z;
) =

2
6664
cos
 � sin
 0 0
sin
 cos
 0 0
0 0 1 0
0 0 0 1

3
7775 (2.14)

Return Value

Matrix

15

trans

Syntax

ReturnMatrix trans(const ColumnVector & a);

Description

Given a column vector a, this function returns the following matrix:

Trans(a) =

2
6664
1 0 0 a1
0 1 0 a2
0 0 1 a3
0 0 0 1

3
7775 (2.15)

Note: the column vector a must have a lenght of at least 3. Only the �rst
3 elements are used.

Return Value

Matrix

16

2.2 The Robot class

The Robot class is composed of the following data elements:

� the number of degree of freedom n (int dof);

� the gravity acceleration vector expressed in the base frame (ColumnVector
gravity);

� one array of dimension n of Link object elements (Link *links);

and the member functions providing the di�erent algorithms implementation
(see tables 2.2{2.5).

The Link class (see table 2.1) encapsulates all the data and functional-
ity required to characterize a single \link" as it is de�ned by Denavit and
Hartenberg (standard notation) [1]. It is initialized by providing the joint
type (int joint type: revolute=0, prismatic=1) and the parameters �, d,
a, � (Real theta, d, a, alpha). It also containts the inertial parameters
data: mass m (Real m), center of mass position vector r (ColumnVector r)
and inertia tensor matrix Ic (Matrix I). In this case, r is given with respect
to the link coordinate frame and Ic is with respect to a coordinate frame
parallel to the link coordinate frame and located at the center of mass of m.

Table 2.1: The Link class data

Kinematic parameters Inertial parameters

int joint type Real m

Real theta, d, a, alpha ColumnVector r

Matrix R, Matrix I

ColumnVector p

On initialization, the constructor sets up the matricesR and p such that

R =

2
64 cos � � cos� sin � sin� sin �

sin � cos� cos � � sin� cos �
0 sin� cos�

3
75 (2.16)

p =

2
64 a cos �

a sin �
d

3
75 (2.17)

17

If the link corresponds to a revolute (prismatic) joint, then only � (d) can be
changed after the link de�nition. This is done through the member function
transform which sets the new value of q (� or d) and updates the matrices
R and p which compose the link homogeneous transform:

T =

"
R p

0 1

#
(2.18)

Only the changing elements are computed since the data of an instance of
a class is persistent throughout the scope of de�nition of the instance (see
[2]). The elements (3,2) and (3,3) of R provide storage for cos� and sin�
which are computed only once. So as to make the implementation faster,
only the elements of R and p involving � (d) are updated with a revolute
(prismatic) joint.

2.2.1 Robot object initialization

The Robot class provides a default constructor that creates a 1 dof robot.
A ndof � 5 matrix containing the kinematic parameters can be supplied
uppon initialization. Also, a ndof � 15 matrix containing the kinematic and
inertial parameters can be supplied. A �lename can also be used (BEWARE,
this constructor is still under development). See the �le rr dat.txt for an
example. The structure of the initialization matrix is:

Column Variable Description

1 � joint type (revolute=0, prismatic=1)
2 � Denavit-Hartenberg parameter
3 d Denavit-Hartenberg parameter
4 d Denavit-Hartenberg parameter
5 � Denavit-Hartenberg parameter
6 m mass of the link
7 cx center of mass along axis x
8 cy center of mass along axis y
9 cz center of mass along axis z
10 Ixx element xx of the inertia tensor matrix
11 Ixy element xy of the inertia tensor matrix
12 Ixz element xz of the inertia tensor matrix
13 Iyy element yy of the inertia tensor matrix
14 Iyz element yz of the inertia tensor matrix
15 Izz element zz of the inertia tensor matrix

18

constructors

Syntax

Robot(int ndof=1);

Robot(const Matrix & dhinit);

Robot(char * filename);

Robot(Robot & x);

Robot & operator=(Robot & x);

Description

Robot object constructors, copy constructor and equal operator.

Return Value

None

19

get q

Syntax

ReturnMatrix get_q(void);

Real get_q(int i);

Description

This function returns a column vector containing the joint variables when
called with no argument. It returns the scalar value of the ith joint variable
when called with an integer argument.

Return Value

ColumnVector or Real

20

set q

Syntax

void set_q(const ColumnVector & q);

void set_q(const Matrix & q);

void set_q(Real q, int i);

Description

This function sets the joint variables or the ith joint variable to q.

Return Value

None

21

2.2.2 Kinematics

The forward kinematic model de�nes the relation:

0T n = G(q) (2.19)

where 0T n is the homogeneous transform representing the position and ori-
entation of the manipulator tool (frame n) in the base frame 0. The inverse
kinematic model is de�ned by

q = G�1(0T n) (2.20)

In general, this equation allows multiple solutions.

22

inv kin

Syntax

ReturnMatrix inv_kin(const Matrix & Tobj,

int mj = 0);

Description

The inverse kinematic model is computed using a Newton-Raphson tech-
nique. If mj == 0, it is based on the following [3]:

0T n(q
�) = 0T n(q + �q) � 0T n(q)�T (�q) = T obj (2.21)

�T (�q) = (0T n(q))
�1T obj = I +� (2.22)

� =

2
6664

0 ��z �y dx
�z 0 ��x dy
��y �x 0 dz
0 0 0 0

3
7775 (2.23)

n�� =
h
dx dy dz �x �y �z

iT
(2.24)

n�� � nJ(q)�q (2.25)

If mj == 1, it is based on the following Taylor expansion [3, 4]:

0T n(q
�) = 0T n(q + �q) � 0T n(q) +

nX
i=1

@0T n

@qi
�qi (2.26)

The function dTdqi computes these partial derivatives.
Given the desired position represented by the homogeneous transform

Tobj, this function return the column vector of joint variables that is corre-
sponding to this position.
Note: mj == 0 is faster (� 1:8�) than mj == 1. Also, mj == 1 might
converge when mj == 0 does not.

Return Value

ColumnVector

23

jacobian

Syntax

ReturnMatrix jacobian(int ref=0);

Description

The manipulator Jacobian de�nes the relation between the velocities in joint
space _q and in the Cartesian space _� expressed in frame i:

i _� = iJ(q) _q (2.27)

or the relation between small variations in joint space �q and small displace-
ments in the Cartesian space ��:

i�� � iJ(q)�q (2.28)

The manipulation Jacobian expressed in the base frame is given by (see [5])

0J(q) =
h

0J1(q)
0J2(q) � � � 0Jn(q)

i
(2.29)

with

0J i(q) =

"
zi �

i�1pn
zi

#
for a revolute joint (2.30)

0J i(q) =

"
zi
0

#
for a prismatic joint (2.31)

where zi and
i�1pn are expressed in the base frame and � is the vector cross

product. Expressed in the ith frame, the Jacobian is given by

iJ(q) =

"
(0Ri)T 0

0 (0Ri)T

#
0J(q) (2.32)

This function returns iJ(q) (i = 0 when not speci�ed).

Return Value

Matrix

24

kine

Syntax

void kine(Matrix & Rot, ColumnVector & pos);

void kine(Matrix & Rot, ColumnVector & pos, int j);

ReturnMatrix kine(void);

ReturnMatrix kine(int j);

Description

The forward kinematic model is provided by implementating the following
recursion:

0Ri = 0Ri�1
i�1Ri (2.33)

0pi = 0pi�1 +
0Ri�1pi (2.34)

where

0T i =

"
0Ri

0pi
0 1

#
(2.35)

The overloaded function kine can return the orientation and position or
the equivalent homogeneous transform for the last (if not supplied) or the
ith link. For example:

Robot myrobot(init_matrix);

Matrix Thomo, R;

ColumnVector p;

/* forward kinematics up to the last link */

Thomo = myrobot.kine();

/* forward kinematics up to the 2nd link */

Thomo = myrobot.kine(2);

/* forward kinematics up to the last link, outputs R and p */

myrobot.kine(R,p);

/* forward kinematics up to the 2nd link, outputs R and p */

myrobot.kine(R,p,2);

are valid calls to the function kine.

Return Value

Matrix or None (in this case Rot and pos are modi�ed on output)

25

dTdqi

Syntax

void dTdqi(Matrix & dRot, ColumnVector & dp, int i);

ReturnMatrix dTdqi(int i);

Description

This function computes the partial derivatives:

@0T n

@qi
= 0T i�1Qi

i�1T n (2.36)

with

Qi =

2
6664
0 �1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3
7775 for a revolute joint (2.37)

Qi =

2
6664
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3
7775 for a prismatic joint (2.38)

Return Value

Matrix or None (in this case dRot and dp are modi�ed on output)

26

2.2.3 Dynamics

The robotics manipulator dynamic model is given by (see appendix A)

� = D(q)�q +C(q; _q) +G(q) (2.39)

acceleration

Syntax

ReturnMatrix acceleration(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & tau);

Description

This function computes �q from q, _q and � which is the forward dynamics
problem. Walker and Orin [6] presented methods to compute the inverse
dynamics. A simpli�ed RNE version computing

� = D(q)�q (2.40)

is implemented in the function torque novelocity. By evaluating this
equation n times, one can compute D(q) (the inertia function), use the
full RNE to compute C(q; _q) +G(q) and then solve the equation :

�q = D�1(q) [� �C(q; _q)�G(q)] (2.41)

Return Value

ColumnVector

27

inertia

Syntax

ReturnMatrix inertia(const ColumnVector & q);

Description

This function computes the robot inertia matrix D(q). A simpli�ed RNE
version computing

� = D(q)�q (2.42)

is implemented in the function torque novelocity. By evaluating this
equation n times, one can compute D(q).

Return Value

Matrix

28

torque

Syntax

ReturnMatrix torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp);

Description

This function computes � from q, _q and �q which is the inverse dynamics
problem. The recursive Newton-Euler (RNE) formulation is one of the most
computationally e�cient algorithm [7, 8] used to solve this problem (see
appendix A).

Return Value

ColumnVector

29

torque novelocity

Syntax

ReturnMatrix torque_novelocity(const ColumnVector & q,

const ColumnVector & qpp);

Description

This function computes � from q and �q when _q = 0 and gravity is set to
zero.

Return Value

ColumnVector

30

2.2.4 Linearized dynamics

Murray and Neuman [8] have developed an e�cient recursive linearized
Newton-Euler formulation that can be used to compute (see appendix A)

�� = D(q)��q + S1(q; _q)� _q + S2(q; _q; �q)�q (2.43)

delta torque

Syntax

void delta_torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp,

const ColumnVector & dq,

const ColumnVector & dqp,

const ColumnVector & dqpp,

ColumnVector & torque,

ColumnVector & dtorque);

Description

This function computes

�� = D(q)��q + S1(q; _q)� _q + S2(q; _q; �q)�q (2.44)

Return Value

None (torque and dtorque are modi�ed on output)

31

dq torque

Syntax

void dq_torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp,

const ColumnVector & dq,

ColumnVector & torque,

ColumnVector & dtorque);

Description

This function computes

S2(q; _q; �q)�q (2.45)

Return Value

None (torque and dtorque are modi�ed on output)

32

dqp torque

Syntax

void dqp_torque(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & dqp,

ColumnVector & torque,

ColumnVector & dtorque);

Description

This function computes

S1(q; _q)� _q (2.46)

Return Value

None (torque and dtorque are modi�ed on output)

33

dtau dq

Syntax

ReturnMatrix dtau_dq(const ColumnVector & q,

const ColumnVector & qp,

const ColumnVector & qpp);

Description

This function computes

@�

@q
= S2(q; _q; �q) (2.47)

Return Value

Matrix

34

dtau dqp

Syntax

ReturnMatrix dtau_dqp(const ColumnVector & q,

const ColumnVector & qp);

Description

This function computes

@�

@ _q
= S1(q; _q) (2.48)

Return Value

Matrix

35

2.3 Graphics

Graphics are provided through calls to the gnuplot 1 software. Instances of
the class Plot2d are used to generate the data and command �les required
by the call to gnuplot.

Plot2d object initialization

Upon initialization, a Plot2d object containt an empty graph. Data, title,
label and other goodies can be added using the following member functions:

� addcommand;

� addcurve;

� dump;

� gnuplot;

� settitle;

� setxlabel;

� setylabel.

1gnuplot is freely available from the following location:

http://www.cs.dartmouth.edu/gnuplot info.html

36

addcommand

Syntax

void addcommand(const char * gcom);

Description

This function adds the command speci�ed by the string gcom to the gnuplot
command �le. Ex: mygraph.addcommand("set grid").
Note: see the gnuplot documentation for the list of commands.

Return Value

None

37

addcurve

Syntax

void addcurve(const Matrix & data,

const char * label = "",

int type = LINES);

Description

This function add the curves speci�ed by the n � 2 matrix data to the
plot using the string label for the legend and type for the curve line type.
De�ned line types are:

� LINES;

� POINTS;

� LINESPOINTS;

� IMPULSES;

� DOTS;

� STEPS;

� BOXES.

See the gnuplot documentation for the description of these line types.

Return Value

None

38

dump

Syntax

void dump(void);

Description

This function dumps the current content of the object to stdout.

Return Value

None

39

gnuplot

Syntax

void gnuplot(void);

Description

This function calls gnuplot with the current content of the object.

Return Value

None

40

settitle

Syntax

void settitle(const char * t);

Description

This function sets the title of the graph to the string t.

Return Value

None

41

setxlabel

Syntax

void setxlabel(const char * t);

Description

This function sets the axis X label of the graph to the string t.

Return Value

None

42

setylabel

Syntax

void setylabel(const char * t);

Description

This function sets the axis Y label of the graph to the string t.

Return Value

None

43

2.4 Miscellaneous

odeint

Syntax

void odeint(ReturnMatrix (*xdot)(Real time, const Matrix & xin),

Matrix & xo,

Real to,

Real tf,

Real eps,

Real h1,

Real hmin,

int & nok,

int & nbad,

RowVector & tout,

Matrix & xout,

Real dtsav);

Description

This function performs the numerical integration of

_x = f(x(t); t) (2.49)

using an adaptive step size based on 4th order Runge-Kutta scheme. It
carries out the integration of xdot with the initial conditions given by xo,
from time to to tf with accuracy eps saving the results at dtsav increments.
After the function call, tout is set ash

t0 t1 � � � tnsteps

i
(2.50)

xout ash
x0 x1 � � � xnsteps

i
(2.51)

xo as xnsteps, nok and nbad to the number of good and bad steps taken.
The function odeint is adapted from [9].

Return Value

None (xo, tout and xout are modi�ed on output)

44

Runge Kutta4

Syntax

void Runge_Kutta4(ReturnMatrix (*xdot)(Real time, const Matrix & xin),

const Matrix & xo,

Real to,

Real tf,

int nsteps,

RowVector & tout,

Matrix & xout);

Description

This function performs the numerical integration of

_x = f(x(t); t) (2.52)

using a �xed step size 4th order Runge-Kutta scheme. It carries out the
integration of xdot with the initial conditions given by xo, from time to to
tf with nsteps. After the function call, tout is set ash

t0 t1 � � � tnsteps

i
(2.53)

and xout ash
x0 x1 � � � xnsteps

i
(2.54)

Return Value

None (tout and xout are modi�ed on output)

45

vec x prod

Syntax

ReturnMatrix vec_x_prod(const ColumnVector & x,

const ColumnVector & y);

Description

This function performs the vector cross product on x and y.

Return Value

ColumnVector

46

2.5 Summary of functions

Table 2.2: Homogeneous transforms

Homogeneous Transforms

eulzxz transform of Euler angles

ieulzxz Eulers angles of a transform

irotk rotation around a unit vector of a transform

irpy roll-pitch-yaw angles of a transform

rotd transform of a rotation around a line segement

rotk transform of a rotation around a unit vector

rpy transform of roll-pitch-yaw angles

rotx transform of a rotation around X axis

roty transform of a rotation around Y axis

rotz transform of a rotation around Z axis

trans transform of a translation

Table 2.3: Plot2d class member functions

Graphics

addcommand add a gnuplot command the 2d graph

addcurve add a curve to the 2d graph

dump dump the content of the graph to stdout

gnuplot plot the graph through a call to gnuplot

settitle sets graph title

setxlabel sets axis X label

setylabel sets axis Y label

47

Table 2.4: Robot class member functions

Joint Variables

get q get the robot joint variables

set q set the robot joint variables

Robot Kinematics

inv kin inverse kinematics

jacobian robot jacobian

kine forward kinematics

dTdqi partial derivartive of forward kinematics

Robot Dynamics

acceleration forward dynamics

inertia robot inertia matrix

torque inverse dynamics

torque novelocity inverse dynamics without velocity and gravity

Robot Linearized Dynamics

delta torque �� = D(q)��q + S1(q; _q)� _q + S2(q; _q; �q)�q

dq torque S2(q; _q; �q)�q

dqp torque S1(q; _q)� _q

dtau dq @�
@q = S2(q; _q; �q)

dtau dqp @�
@ _q = S1(q; _q)

Table 2.5: Miscellaneous

Miscellaneous

odeint adaptive step size Runge-Kutta integrator

Runge Kutta4 �xed step size 4th order Runge-Kutta integrator

vec x prod vector cross product

48

Chapter 3

Reporting bugs,

contributions and comments

I intend to support this library. By this, I mean that bugs will be �xed as
fast as time allows me and that new functionalities will be introduced in
future releases. If you �nd a bug or think some part of the documentation
could be improved, let me know and I will try to include the corrections
in the next release. Comments regarding the documentation will not be
treated as fast as bug reports. I will not, however, help users with problems
related to assignements and homework. You can use your Web browser to
send comments or bug report with the URL:

http://www.ind2.polymtl.ca/ROBOOP.
If you don't have acces to a Web browser, send email to

richard.gourdeau@polymtl.ca.

3.1 Reporting bugs

When reporting bugs, please send the following information (see the �le
bugs.txt):

VERSION OF THE PACKAGE (see the readme.txt file):

OS:

COMPILER:

DESCRIPTION OF THE BUG:

49

SAMPLE CODE THAT MAKE THE BUG APPARENT:

or use the URL: http://www.ind2.polymtl.ca/ROBOOP.

3.2 Making a contribution to the package

If you have written some code you think might be useful for other users
of the package, I will be happy to integrate it in future releases. Make�les
for compilers not included in this distribution would be greatly appreciated.
Contact me for more details: richard.gourdeau@polymtl.ca.

3.3 Citing the package

If you are using the ROBOOP package, please let me know. If you want
to cite this package in some of your work, please use [10] or the following
BibTEX entry:

@ARTICLE{Gourdeau97,

author = {Richard Gourdeau},

month = sep,

year = 1997,

title = {Object Oriented Programming for Robotic

Manipulators Simulation},

journal = {IEEE Robotics and Automation Magazine},

volume = 4,

number = 3,

pages = {21--29}

}

50

Chapter 4

Credits and

acknowledgements

I would like to thank Robert Davies for making is NEWMAT09 library available.
The hardware and software used to develop this package were funded

through NSERC grants OGP0138478 and EQP0172766.

51

Chapter 5

Future developments

In future releases, we hope to include the following:

� functions for basic control laws (computed torque method [7], sliding
modes, etc);

� 3D graphics functions using gnuplot;

� functions dealing quaternions;

� a class using the modi�ed D-H formalism [11];

� make �les for other compilers.

52

Bibliography

[1] J. Denavit and R. S. Hartenberg, \A kinematic notation for lower pair
mechanisms based on matrices", ASME Jour. of Applied Mechanics,
pp. 215{221, June 1955.

[2] Bruce Eckel, C++ inside & out, Osborne, McGraw-Hill, 1993.

[3] B. Gorla and M. Renaud, Mod�eles des robots manipulateurs, application

�a leur commande, Cepadues-�editions, Toulouse, mai 1984.

[4] J. J. Uicker, J. Denavit, and R. S. Hartenberg, \An iterative method
for the displacement analysis of spatial mechanisms", ASME Jour. of

Applied Mechanics, vol. 31, pp. 309{316, June 1964.

[5] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing,
Vision, and Intelligence, McGraw-Hill, New York, 1987.

[6] M. W. Walker and D. E. Orin, \E�cient dynamic computer simulation
of robotic mechanisms", ASME Jour. of Dynamic Systems, Measure-

ment, and Control, vol. 104, pp. 205{211, 1982.

[7] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, \On-line computa-
tional scheme for mechanical manipulators", ASME Jour. of Dynamic

Systems, Measurement, and Control, vol. 102, pp. 69{76, June 1980.

[8] J. J. Murray and C. P. Neuman, \Linearization and sensitivity models
of the Newton-Euler dynamic robot model", ASME Jour. of Dynamic

Systems, Measurement, and Control, vol. 108, pp. 272{276, Sept. 1986.

[9] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling, Numerical Recipes in C, The Art of Scienti�c Computing,
Cambridge University Press, 1988.

53

[10] Richard Gourdeau, \Object oriented programming for robotic manip-
ulators simulation", IEEE Robotics and Automation Magazine, vol. 4,
no. 3, pp. 21{29, Sept. 1997.

[11] J. J. Craig, Introduction to Robotics: Mechanics and Control, Addison-
Wesley Publising Company, 2nd edition, 1989.

54

Appendix A

Recursive Newton-Euler

algorithms

In order to apply the RNE as presented in [8], let us de�ne the following
variables (referenced in the ith coordinate frame if applicable):

� �i is the joint type; �i = 0 for a revolute joint and �i = 1 for a
prismatic joint;

� pi =
h
ai di sin�i di cos�i

iT
is the position of the ith with respect

to the i� 1th frame;

� z0 =
h
0 0 1

iT

A.1 Recursive Newton-Euler formulation

� Forward Iterations for i = 1; 2; : : : ; n.

Initialize: !0 = _!0 = 0 and _v0 = �g.

!i = RT
i [!i�1 + �iz0 _�i] (A.1)

_!i = RT
i f _!i�1 + �i[z0��i + !i�1 � (z0 _�i)]g (A.2)

_vi = RT
i f _vi�1 + (1� �i)[z0�vi + 2!i�1 � (z0 _di)]g

+ _!i � pi + !i � (!i � pi) (A.3)

� Backward Iterations for i = n; n� 1; : : : ; 1.

55

Initialize: fn+1 = nn+1 = 0.

_vci = vi + !i � ri + !i � (!i � ri) (A.4)

F i = mi _vci (A.5)

N i = Ici _!i + !i � (Ici!i) (A.6)

f i = Ri+1[f i+1] + F i (A.7)

ni = Ri+1[ni+1] + pi � f i +N i + ri � F i (A.8)

�i = �in
T
i (R

T
i z0) + (1� �i)f

T
i (R

T
i z0) (A.9)

A.2 Recursive linearized Newton-Euler formula-

tion

With

pdi =
@pi
@di

=
h
0 sin�i cos�i

iT
(A.10)

Q =

2
64 0 �1 0
1 0 0
0 0 0

3
75 (A.11)

one can use the following

� Forward Iterations for i = 1; 2; : : : ; n.

Initialize: �!0 = � _!0 = � _v0 = 0.

�!i = RT
i f�!i�1 + �i[z0� _�i �Q(!i�1 + _�i)��i]g (A.12)

� _!i = RT
i f� _!i�1 + �i[z0���i + �!i�1 � (z0 _�i) + !i�1 � (z0� _�i)]

��iQ[!i�1 + z0��i + !i�1 � (z0 _�i)]��ig (A.13)

� _vi = RT
i f� _vi�1 � �iQ _vi�1��i

+(1� �i)[z0��vi + 2�!i�1 � (z0 _di) + 2!i�1 � (z0� _di)]g

+� _!i � pi + �!i � (!i � pi) + !i � (�!i � pi)

+(1� �i)(_!i � pdi + !i � (!i � pdi))�di (A.14)

� Backward Iterations for i = n; n� 1; : : : ; 1.

Initialize: �fn+1 = �nn+1 = 0.

� _vci = �vi + �!i � ri + �!i � (!i � ri) + !i � (�!i � ri)(A.15)

56

�F i = mi� _vci (A.16)

�N i = Ici� _!i + �!i � (Ici!i) + !i � (Ici�!i) (A.17)

�f i = Ri+1[�f i+1] + �F i + �i+1QRi+1[f i+1]��i+1 (A.18)

�ni = Ri+1[�ni+1] + �N i + pi � �f i + ri � �F i

+(1� �i)(pdi � f i)�di + �i+1QRi+1[ni+1]��i+1(A.19)

��i = �i[�n
T
i (R

T
i z0)� nT

i (R
T
i Qz0)��i]

+(1� �i)[�f
T
i (R

T
i z0)] (A.20)

57

Appendix B

GNU Library General Public

License

Content of the �le GNUlgpl.txt.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION

0. This License Agreement applies to any software library which contains a
notice placed by the copyright holder or other authorized party saying it
may be distributed under the terms of this Library General Public License
(also called \this License"). Each licensee is addressed as \you".

A \library" means a collection of software functions and/or data prepared so
as to be conveniently linked with application programs (which use some of
those functions and data) to form executables.

The \Library", below, refers to any such software library or work which
has been distributed under these terms. A \work based on the Library"
means either the Library or any derivative work under copyright law: that
is to say, a work containing the Library or a portion of it, either verbatim
or with modi�cations and/or translated straightforwardly into another lan-
guage. (Hereinafter, translation is included without limitation in the term
\modi�cation".)

\Source code" for a work means the preferred form of the work for making
modi�cations to it. For a library, complete source code means all the source
code for all modules it contains, plus any associated interface de�nition �les,
plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modi�cation are not covered
by this License; they are outside its scope. The act of running a program
using the Library is not restricted, and output from such a program is covered

58

only if its contents constitute a work based on the Library (independent of
the use of the Library in a tool for writing it). Whether that is true depends
on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and dis-
claimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and distribute a copy of this License along
with the Library.

You may charge a fee for the physical act of transferring a copy, and you may
at your option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it,
thus forming a work based on the Library, and copy and distribute such
modi�cations or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

a) The modi�ed work must itself be a software library.

b) You must cause the �les modi�ed to carry prominent notices stating
that you changed the �les and the date of any change.

c) You must cause the whole of the work to be licensed at no charge to all
third parties under the terms of this License.

d) If a facility in the modi�ed Library refers to a function or a table of
data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then you
must make a good faith e�ort to ensure that, in the event an application
does not supply such function or table, the facility still operates, and
performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a
purpose that is entirely well-de�ned independent of the application.
Therefore, Subsection 2d requires that any application-supplied func-
tion or table used by this function must be optional: if the application
does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modi�ed work as a whole. If identi�able
sections of that work are not derived from the Library, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Library, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

59

Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with
the Library (or with a work based on the Library) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must
alter all the notices that refer to this License, so that they refer to the ordinary
GNU General Public License, version 2, instead of to this License. (If a
newer version than version 2 of the ordinary GNU General Public License
has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so
the ordinary GNU General Public License applies to all subsequent copies
and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library
into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, un-
der Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you accompany it with the complete correspond-
ing machine-readable source code, which must be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software inter-
change.

If distribution of object code is made by o�ering access to copy from a des-
ignated place, then o�ering equivalent access to copy the source code from
the same place satis�es the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the
object code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is
called a \work that uses the Library". Such a work, in isolation, is not a
derivative work of the Library, and therefore falls outside the scope of this
License.

However, linking a \work that uses the Library" with the Library creates an
executable that is a derivative of the Library (because it contains portions of
the Library), rather than a \work that uses the library". The executable is
therefore covered by this License. Section 6 states terms for distribution of
such executables.

When a \work that uses the Library" uses material from a header �le that
is part of the Library, the object code for the work may be a derivative work

60

of the Library even though the source code is not. Whether this is true is
especially signi�cant if the work can be linked without the Library, or if the
work is itself a library. The threshold for this to be true is not precisely
de�ned by law.

If such an object �le uses only numerical parameters, data structure layouts
and accessors, and small macros and small inline functions (ten lines or less
in length), then the use of the object �le is unrestricted, regardless of whether
it is legally a derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute
the object code for the work under the terms of Section 6. Any executables
containing that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a \work
that uses the Library" with the Library to produce a work containing portions
of the Library, and distribute that work under terms of your choice, provided
that the terms permit modi�cation of the work for the customer's own use
and reverse engineering for debugging such modi�cations.

You must give prominent notice with each copy of the work that the Library
is used in it and that the Library and its use are covered by this License.
You must supply a copy of this License. If the work during execution dis-
plays copyright notices, you must include the copyright notice for the Library
among them, as well as a reference directing the user to the copy of this Li-
cense. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the
work (which must be distributed under Sections 1 and 2 above); and,
if the work is an executable linked with the Library, with the complete
machine-readable \work that uses the Library", as object code and/or
source code, so that the user can modify the Library and then relink to
produce a modi�ed executable containing the modi�ed Library. (It is
understood that the user who changes the contents of de�nitions �les
in the Library will not necessarily be able to recompile the application
to use the modi�ed de�nitions.)

b) Accompany the work with a written o�er, valid for at least three years,
to give the same user the materials speci�ed in Subsection 6a, above,
for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by o�ering access to copy from a
designated place, o�er equivalent access to copy the above speci�ed
materials from the same place.

d) Verify that the user has already received a copy of these materials or
that you have already sent this user a copy.

61

For an executable, the required form of the \work that uses the Library"
must include any data and utility programs needed for reproducing the exe-
cutable from it. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the license restrictions of
other proprietary libraries that do not normally accompany the operating
system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-
by-side in a single library together with other library facilities not covered
by this License, and distribute such a combined library, provided that the
separate distribution of the work based on the Library and of the other library
facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities. This must
be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part
of it is a work based on the Library, and explaining where to �nd the
accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Li-
brary or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Library
(or any work based on the Library), you indicate your acceptance of this
License to do so, and all its terms and conditions for copying, distributing or
modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library),
the recipient automatically receives a license from the original licensor to
copy, distribute, link with or modify the Library subject to these terms and
conditions. You may not impose any further restrictions on the recipients'
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

62

11. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as
a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then the only
way you could satisfy both it and this License would be to refrain entirely
from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply, and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Library under this License may add an explicit geographi-
cal distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of
the Library General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may di�er in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Library speci�es
a version number of this License which applies to it and \any later version",
you have the option of following the terms and conditions either of that
version or of any later version published by the Free Software Foundation. If
the Library does not specify a license version number, you may choose any
version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to

63

ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make ex-
ceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY \AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-
ABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE LIBRARY TO OPERATEWITH ANY OTHER SOFTWARE), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

64

