3.4 Computed-Torque Control

Through the years there have been proposed many sorts of robot control
schemes. As it happens, most of them can be considered as special cases of
the class of computed-torgue controllers. Computed torque, at the same
time, is a special application of feedback linearization of nonlinear systems,
which has gained popularity in modern systems theory [Hunt et al. 1983,
Gilbert and Ha 1984]. In fact, one way to classify robot control schemes is to
divide them as “computed-torque-like” or “noncomputed-torque-l_ike.”
Computed-torque-like controls appear in robust control, adaptive control,
learning control, and so on. _ '

In the remainder of this chapter we explore this class of robot controllers,
which includes such a broad range of designs. Computed-torque control al-
lows us to conveniently derive very effective robot controllers, while provid-
ing a framework to bring together classical independent joint control and
some modern design techniques, as well as set the stage for the rest of the
book. A summary of the different computed-torque-like controllers is given
at the end of the section in Table 3.4-1. We shall see that many digital robot
controllers are also computed-torque-like controllers (Section 3.5).

Derivation of Inner Feedforward Loop
The robot arm dynamics are
M@j+ Vg +Fg+F @)+ Glg) +1,=1 (3.4-1)
or ) _ . . '
M@+ Ned+t, =1, (342)

with the joint variable ¢(f) € R*, 1(f) the control torque, and t(¢) a distur-
bance. If this equation includes motor actuator dynamics (Section 2.6), then
7(#) is an input volitage. ‘ _ :

Suppose that a desired trajectory g,(f) has been selected for the arm mo-
tion, according to the discussion in Section 3.2. To ensure trajectory track-
ing by the joint variable, define an output or tracking error as

e =q0-a0. - (343
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To demonstrate the influence of the input 'c(z) on the tracking error, differen-
tiate twice to obtain

é=d,— ¢
é=4¢q,—4q.
Solving now for 4 in (3.4-2) and substituting into the last equation yields
E= g+ MN + 1, — 1) (3.4-4)
Defining the control input function
u=4¢g,+ M—(N - ':) (3.4-3)
and the disturbance function
w= M1, : : (3.4-6)

we may define a state x(r) € R?" by

X = [ é] (3.4-7)

and write the tracking error dynamics as

LA o

This is a linear error system in Brunovsky canonical form consisting of n
pairs of double integrators 1/s2, one per joint. It is driven by the control
input u(¢) and the disturbance w{¢). Note that this derivation is a special case
of the general feedback linearization procedure in Section 2.4.

The feedback linearizing transformation (3.4-5) may be inverted to yield

T=M({G,— u)+ N. (3.4-9)
We call this the computed-torque control law. The importance of these ma-
nipulations is as follows. There has been no state-space transformation in
going from (3.4-1) to (3.4-8). Therefore, if we select a control (%) that stabi-
lizes (3.4-8) so that e(rf) goes to zero, then the nonlinear control input ()

given by (3.4-9) will cause trajectory following in the robot arm (3.4-1). In
fact, substituting (3.4-9) into (3.4-2) yields

Mi+N+v,=M{,—u+N
or
é=u+ M, (3.4-10)
which is exactly (3.4-8).
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FIGURE 3.4-1 Computed-torque control scheme, showing inner and outer loops.

The stabilization of (3.4-8) is not difficult. In fact, the nonlinear transfor-
mation (3.4-5) has converted a complicated nonlinear controls design prob-
lem into a simple design problem for a linear system consisting of »
decoupled subsystems, each obeying Newton’s laws.

The resulting control scheme appears in Fig. 3.4-1. It is important to note
that it consists of an inner nonlinear loop plus an outer control signal u(t). We
shall see several ways for selecting u(?). Since () will depend on ¢(?) and
4(2), the outer loop will be a feedback loop. In general, we may select a dy-
namic compensator H(s) so that '

U(s) = H(s)E(s). (3.4-11)

H(s) can be selected for good closed-loop behavior. According to (3.4-10),
the closed-loop error system then has transfer function

T(s) = s2I — H{s). (3.4-12)

It is important to realize that computed-torque depends on the inversion
of the robot dynamics, and indeed is sometimes called inverse dynamics
control. In fact, (3.4-9) shows that 7(2) is computed by substituting §, — u for
¢ in (3.4-2); that is, by solving the robot inverse dynamics problem. The
caveats associated with system inversion, including the problems resulting
when the system has non-minimum-phase zeros, all apply here. (Note that
in the linear case, the system zeros are the poles of the inverse. Such non-
minimum-phase notions generalize to nonlinear systems.) Fortunately for
us, the rigid arm dynamics are minimum phase.

There are several ways to compute (3.4-9) for implementation purposes.
Formal matrix multiplication at each sample time should be avoided. In
some cases the expression may be worked out analytically. A good way to
compute the torque 1(?) is to use the efficient Newton-Euler inverse dynam-
ics formulation [Craig 1989] with 4, — u in place of ¢(¢).
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The outer-loop signal #(f) can be chosen using many approaches, includ-
ing robust and adaptive control techniques. In the remainder of this chapter
we explore some choices for u(f) and some variations on computed-torque
control.

PD Outer-Loop Design

One way to select the auxiliary control signal u(t) 15 as the proportional-
plus-derivative (PD) feedback,

u=—-K¢—-Ke. (3.4-13)
Then the overall robot arm input becomes

T = M(g) (§, + K¢ + Ke) + Ng,q). (3.4-14)
This controller is shown in Fig. 3.4-6 with K, = 0. ‘
The closed-loop error dynamics are
E+KeétKe=mw | (3.4-15)

or in state-space form,

A AN o

The closed-loop characteristic polynomial is 7 ‘
A(s)=|sZI+Ks+Kl : (3.4-17)

Choice of PD Gains. It is usual to take the n X n gain matrlces diagonal
so that

K, = diagk, ], K, = diagfk, }. - (3.4-18)
Then B '

Afs) = H (s> + ks + k), (3.4-19)
and the error system is asymptotically stabIe as long as the k, and kp are all
positive. Therefore, as long as the disturbance w(?) is bounded so is the
error e(f). In connection with this, examine (3.4-6).and recall from Table
2.3-1 that M~! is upper bounded. Thus bouridedness of w(¢) is equivalent to
boundedness of T,(?). -

It is important to note that although selectmg the PD. galn matnces diago-
nal results in decoupled control at the outer-loop level, it does not result in a
decoupled joint-control strategy. This is because multiplication by M(g) and
addition of the nonlinear feedforward terms N(qg,q) in the inner loop scram-
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f bles the signal «(f) among all the joints. Thus, information on all joint posi-
- tions g(#) and velocities ¢(7) is generally needed to compute the control (¢)
i for any one given joint.

. The standard form for the second-order characteristic polynomial is

P(s) = s* + 26w,s + @2, (3.4-20)

- with { the damping ratio and o, the natural frequency. Therefore, desired
¢ performance in each component of the error e(f) may be achieved by select-
. ing the PD gains as _
: k, = w2 k, = 2o, , (3.4-21)

P

with {, ®, the desired damping ratio and natural frequency for joint error i.
. It may be useful to select the desired responses at the end of the arm faster
. than near the base, where the masses that must be moved are heavier.

It is undesirable for the robot to exhibit overshoot, since this could cause
impact if, for instance, a desired trajectory terminates at the surface of a
workpiece. Therefore, the PD gains are usually selected for critical damping
{ = 1. In this case - : :

k,=2\/k,, k, =k (3.4-22)

Selection of the Natural Frequency. The natural frequency @, governs the
speed of response in each error component. It should be large for fast re-
sponses and is selected depending on the performance objectives. Thus the
desired trajectories should be taken into account in selecting ®,. We discuss
now some additional factors in this choice.

There are some upper limits on the choice for w, [Paul 1981]. Although
the links of most industrial robots are massive, they may have some flexi-
bility. Suppose that the frequency of the first flexible or resonant mode of
link 7 is
(3.4-23)

©, = \ k1T

with J the link inertia and k, the link stiffness. Then, to avoid exciting the
resonant mode, we should select ®, < ®,/2. Of course, the link inertia J
changes with the arm configuration, so that its maximum value might be
used in computing . - ' ' '

Another upper bound on w, is provided by considerations on actuator
saturation. If the PD gains are too large, the torque 7(f) may reach its upper
limits. ' '

Some more feeling for the choice of the PD gains is provided from error-
boundedness considerations as follows. The transfer function of the closed-
loop error system .in (3.4-15) is :

esy =(s4I+ Ks + ‘Kp)-'w(s), (3_4-24)
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or if K, and K, are diagonal,

| e,.(s) = ST‘W W(S) = H(S)W(S) (3.4-25)
J w(s) = sH(s)W(s). (3.4-26)

A TR

We assume that the disturbance and M-! are bounded (Table 2.3-1),
so that

Iwll-< Ia= | Iz, || < md, (3.4-27)

‘__w1th m and d known for a given robot arm. Therefore,
| le@l <lHEO K wl <|H$Imd = (3.428)
le,@ Il < lisH(s) | ltw | =< llsH(s) IImd | (3.4-29)

Now selecting the L.-norm, the operator gain || H(s) ||2 is the maximum
value of the Bode magnitude plot of H(s) (Section 1.4). For a critically
damped system,

sup | H(jo) I, = 1/k,.

o (3.4-30)
Therefore, _ _ *
e, = ﬁ?i/kpi. (3.4-31)
Moreover (see the Problems), _ |
sup [l joH(jo) |, = 1/k,, (3.4-32)
® .
so that Co
e ll, = ﬁc_i/kv.. (3.4-33)

Thus, in the case of critical damping, the position error decreases with k
and the velocity error decreases with k

EXAMPLE 3.4-1: Simulation of PD Computed—Toi‘que Control

In this example we intend to show the detailed mechanics of smmlatmg a PD
computed-torque controller on a digital computer.

a. Computed—Torque Control Law

In Example 2.2-2 we found the dynamics of the two-link planar elbow arm shown
in Fig. 3.2-1 to be
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(m, + myat + mya + 2m,a,a,cos 0, m2al + m,a,a, cos 8,| |86,
m,a3 + mya,a, cos 0, mai 0,

1)

+ —mzala2(2él§2 +62)sin 6, +| (7 + my)ga, cos 8, + myga, cos (9; +6,)|_| 1, _
m,a,a,0; sin 9, m,ga, cos (8, + 6,) T,

These are in the standard form
M@)§ + g.9) + G@) = . (2)

Take the link masses as 1 kg and their lengths as 1 m.
The PD computed-torque control law is given as

T=Mg)Nd; + Ke + K,e) + V(g.9) + G(g), (3
with the tracking error defined as
€=4qg;,— 4. 4)

b. Desired Trajectory
Let the desired trajectory g,(f) have the components
0,,= g, sin(2rt/T)

(5)
0,, = g, cos(2nt/T)

with period T= 2 s and amplitudes g, = 0.1 rad ~ 6 deg. For good tracking select
the time constant of the closed-loop system as 0.1 s. For critical damping, this
means that K, = diaglk ], K, = diag{k }, where

©,=1/0.1=10

, (6)
k,=w02=100, k =2, =20.

It is important to realize that the selection of controller parameters such as the
PD gains depends on the performance objectives—in this case, the period of the
desired trajectory. :

¢. Computer Simulation

Let us simulate the computed-torque controller using program TRESP in Appen-
dix B. Simulation using commercial packages such as MATLAB and SIMNON is
quite similar. :

The subroutines needed for TRESP are shown in Fig. 3.4-2. They are worth ex-
amining closely. Subroutine SYSINP (IT;x,t) is called once per Runge-Kutta inte-
gration period and generates the reference trajectory q,(®), as well as ¢,(¢) and
4,(2). Note that the reference signal should be held constant during each integra-
tion period.
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FILE 21nkct . FOR :
IMPLEMENTATION OF COMPUTED-TORQUE CONTROLLER ON 2-LINK PLANAR ARM
SUBROUTINES FOR USE WITH TRESP

SUBROUTINE TO COMPUTE DESIRED TRAJECTORY ‘
The trajectory value must be conistant w1th1n each Runge- Kutta
integration interval

SUBROUTINE SYSINP{IT,X,t) .

REAL x(*) .

COMMON/TRAT/qd(6), qdp(6), qdpp(6) |
DATA gl, g2, per, twopi/0.1, 0.1, 2., 6.283/

COMPUTE DESIRED TRAJECTORY qd(t) qdp(t), qdpp{t)
fact= twopi/per
qd(l)= 51*51n(fact*t)
qd(2)= g2*cos(fact*t)
qdp(1)=  gl*fact*cos(fact*t)
qdp(2)= -g2*fact*sin(fact*t)
qdpp(l)= -gl*fact**2*sin(fact*t)
qdpp(2)= <g2*fact**2¥cos(fact*t)

RETURN
END

*k*******************************************************
MAIN SUBRQUTINE CALLED BY RUNGE-KUTTA INTEGRATOR.:
SUBROUTINE F(t,x xp)
REAL x(*), xp(¥*)

COMPUTED -TORQUE CONTROLLER
CALL CTL{x)

ROBOT ARM DYNAMICS
‘CALL ARM(X,;xp)

RETURN
END

AR Atk S S R R Sk st s S

COMPUTED-TORQUE CONTROLLER SUBROUTIKE
SUBROUTINE CTL{x)
REAL x(¥*),ml,m2,M11,M12 M22 N1,N2, kp,kv
COMMON/CONTROL/tl t2

The next line is to plot the errors and torques
COMMON/QUTBUT/ e(2), ep(2), tpl, tp2
COMMON/TRAJ/qd(6), qdp(6), qdpp(6)
DATA ml,m2,al,a2, g/1.,1.,1.,1., 9.8/,
DATA' kp, kv/ 100,20/ , S

COMPUTE TRACKING ERRORS o
e(l) = qd(l). - x(ly ~-. 2 R
e{2).=.qd(2) . - %2} o ' REREN

ep(l)= qdp(l) - x(3)

ep(2)= qdp(2) - x(4)

I

COMPUTATION OF M{q), N(q,qp)
Mll= (ml+m2)*al#*2 + m2%a2%%2 + 2¥m2%al¥aZ*cos(x(2))



